Abstract—The goal this work is present a method for neural network-based gait-pattern adaptation algorithms for an active lower limbs orthosis. Stable trajectories are generated during the optimization process, considering a stable trajectory generator based on the Zero Moment Point criterion and the inverse dynamic model. Additionally, two neural network (NN) are used to decrease the time-consuming computation of the model and ZMP optimization. The first neural network approximates the inverse dynamics and the ZMP optimization, while the second one works in the optimization procedure, giving the adapting parameter according to orthosis-patient interaction. Also, a robust controller based on the \mathcal{H}_∞ method is designed to attenuate the effects of external disturbances and parametric uncertainties in the trajectory tracking errors. The dynamic model of the actual exoskeleton, with interaction forces included, is used to generate simulation results.

I. INTRODUCTION

The use of robotics as support for rehabilitation procedures is increasing due mainly to the importance of exercises for functional rehabilitation [1]. The robotic orthosis Lokomat is being used for rehabilitation of patients with stroke or spinal cord injury individuals [3]. The device is installed in a treadmill and the patient walks using a weight compensator and performing a fixed gait-pattern, imposed through a joint position control of the robotic orthosis. Gait-pattern adaptation algorithms, based on the human-machine interaction, are proposed in [4], [6] to ensure the patient is not only having its leg moved passively for the locomotion device.

The proposed algorithms in [6] can not be applied directly for active lower limbs orthoses since they were developed for a fixed base robotic system, the Lokomat orthosis. They do not consider the stability of the gait-pattern. For exoskeleton, which can be considered as a biped robot, the generation of a stable walking pattern is an essential issue. In [2], it is presented a trajectory generator for biped robots taking into account the ZMP (Zero Moment Point) criterion [9]. Specific points of the ankle and hip trajectories are defined according to the desired step length and duration, and the minimization of a functional related to the ZMP. The cubic splines interpolation method is used to generate the smooth and second-order differentiable curves. The joint trajectories are obtained from inverse kinematics. In [5], the trajectory generator proposed in [2] is extended for different ground inclinations and stairs.

In this paper it is proposed the application of the inverse dynamic-based gait-pattern adaptation algorithm proposed in [6] considering the stable trajectory generator described in [2]. In this way, stable trajectories are generated during the optimization process where the step duration, considered here as the adaptation parameter, is updated according to the orthosis-patient interaction. Furthermore, two neural network (NN) are used to decrease the time-consuming computation of the model and ZMP optimization. The first one works as function approximator of the model-dependent term, while the second one works as part of the optimization procedure and gives the adapted parameter.

To ensure the orthosis-patient system follows the desired trajectory even in the presence of external disturbances and parametric uncertainties, a robust controller based on \mathcal{H}_∞ performance is implemented. In [7], the authors present experimental results obtained from the implementation in robot manipulators of a nonlinear \mathcal{H}_∞ control via quasi-linear parameter varying (quasi-LPV) representation. The quasi-LPV representation of a nonlinear system is a state-space equation where the system matrices are functions of state-dependent parameters [12]. In [8], a similar controller is proposed for disturbance attenuation considering a semi-passive dynamic walking of biped robots.

The paper is organized as follows: Section II presents the trajectory generator for biped robots; Section III presents the dynamic model of the orthosis-patient system and the robust controller design; Section IV introduces the gait-pattern adaptation algorithm based on inverse dynamics applied to exoskeletons; Section V presents the neural networks’ structures and the complete description of the optimization process; Section VI presents the results of the gait-pattern adaptation algorithm applied to an exoskeleton model; and Section VII shows the conclusions.

II. TRAJECTORY GENERATION WITH ZMP CRITERION

In this section, the trajectory generator for biped robots proposed in [2] is presented, with some considerations about the ZMP trajectory optimization. It is considered the exoskeleton as a biped robot with trunk, knees and feet, as shown in Figure 1. According to [2], the walking cycle can be divided in two phases, double support and single support. The double support phase starts when the heel of the forward foot touches the ground and finishes when the toe of the backward foot leaves the ground. The second phase is characterized by the fact only one foot is in contact with the ground. In this work, the double support represents 20% of the entire walking cycle.
As the foot and hip trajectories can be respectively parametrized in the ground during the times step instants, respectively.

The foot height and foot velocities are also imposed, see [2] details. A smooth trajectory can be generated through the interpolation method based on cubic splines, which generates a second order differentiable trajectory for all time interval.

A. Foot Trajectory

The step \(k \) occurs between the \(kT_c \) and \((k+1)T_c \) time instants, where \(T_c \) is the step time interval (s). Step \(k \) is defined starting when the heel of any foot leaves the ground and finishing when the same heel touches the ground again. Figure 2. \(q_h \) and \(q_f \) are the angles of the foot with relation to the horizontal at the initial and final time instants of the swing phase (single support), respectively.

Assuming that the left foot is completely in contact with the ground during the times \(kT_c + T_d \) and \((k+1)T_c \), the following conditions can be stated:

\[
\theta_a = \begin{cases}
q_g(k), & t = kT_c \\
q_b, & t = kT_c + T_d \\
-q_f, & t = (k+1)T_c \\
-q_g(k), & t = (k+1)T_c + T_d
\end{cases}
\]

(1)

where \(T_d \) is the time interval of the double support phase, \(q_g(k) \) and \(q_g(k) \) are the ground slope for the initial and final step instants, respectively.

The following specifications can also be defined for the foot position:

\[
x_a = \begin{cases}
kD_s, & t = kT_c \\
kD_s + l_a \sin(q_b), & t = kT_c + T_d \\
kD_s + l_a \cos(q_b), & t = kT_c + T_m \\
(k + 2)D_s - l_a \sin(q_f), & t = (k+1)T_c \\
(k + 2)D_s - l_a \cos(q_f), & t = (k+1)T_c + T_d
\end{cases}
\]

(2)

and

\[
z_a = \begin{cases}
h_{g_b}(k) + l_a, & t = kT_c \\
h_{g_b} + l_a \sin(q_b) + l_a \cos(q_b), & t = kT_c + T_d \\
h_{a0}, & t = kT_c + T_m \\
h_{g_b} + l_a \sin(q_f) + l_a \cos(q_f), & t = (k+1)T_c \\
h_{g_b}(k) + l_a, & t = (k+1)T_c + T_d
\end{cases}
\]

(3)

where \((l_a, H_{a0}) \) is the higher foot position (this position occurs at \(kT_c + T_m \)), \(D_s \) is the step length (m), \(l_a \) is the foot height and \(l_a \) is the distance between the heel and the ankle joint. The heights of the ground when the foot is touching it are defined as \(h_{g_b}(k) \) and \(h_{g_b}(k) \), for the initial and final step instants, respectively. Some constraints on right foot velocities are also imposed, see [2] details.

A smooth trajectory can be generated through the interpolation method based on cubic splines, which generates a second order differentiable trajectory for all time interval.

B. Hip Trajectory

It is considered that the angle between the trunk and the horizontal axis \(\theta_h(t) \) presents no variation along the walking cycle. Also, as the position of the ZMP is not affected by the hip motion in the z direction, it is assumed a little variation between the highest position \(H_{\text{max}} \) and the lowest position \(H_{\text{min}} \), where the former occurs at the middle of the single support phase and the second at the middle of the double support phase. That is, \(z_h \) can be defined as:

\[
z_h = \begin{cases}
H_{\text{min}}, & t = kT_c + 0.5T_d \\
H_{\text{max}}, & t = kT_c + 0.5(T_c - T_d) \\
H_{\text{min}}, & t = (k+1)T_c + 0.5T_d
\end{cases}
\]

(4)

Considering the sagittal plane, the hip motion along the \(x \) direction is the main contribution for the ZMP inside the support polygon. In [2] it is proposed generate a set of stable trajectories \(x_h(t) \) and select the trajectory with large stability margin according to the ZMP criterion.

The following conditions are defined for the hip trajectory along the \(x \) direction:

\[
x_h = \begin{cases}
kD_s + x_{sd}, & t = kT_c \\
(k + 1)D_s - x_{sd}, & t = kT_c + T_d \\
(k + 1)D_s + x_{sd}, & t = (k+1)T_c
\end{cases}
\]

(5)

where \(x_{sd} \) and \(x_{sd} \) are the distances along the \(x \) direction from the hip to the ankle of the support foot at the initial and final time instants of the swing phase, respectively. In this paper, these values are constrained to \(x_{sd} \) and \(x_{sd} \) are respectively parametrized in the ground during the times step instants, respectively.
Considering the interpolation method based on cubic splines, it is possible to generate different trajectories and to select the best one according to the ZMP criterion. To guarantee that the ZMP remains most of the time next to the center to the support polygon, the following functional is defined:

$$ J(x_{ed}, x_{sd}) = \frac{\sum_{n=1}^{p} d_{ZMP}^2}{p} $$

where \(d_{ZMP} \) is the distance between the ZMP and the center of the stability region defined by the convex polygon of the contact points and \(p \) is the number of points throughout the trajectory in which \(d_{ZMP} \) is computed.

C. Optimization Issues

The steepest descent algorithm was selected as the optimization method. It presents a easy implementation and high convergence rate after all parameters be adjusted. The computation of \(J \) is highly time consuming if a representative number of trajectory points \(p \) must be considered. The algorithm is defined as:

$$ \bar{X}_{n+1} = \bar{X}_n - \eta \nabla J(x_{ed}, x_{sd}) $$

where \(\bar{X}_n \) is the vector containing the values of \(x_{ed} \) and \(x_{sd} \) for optimization step \(n \), \(\eta \) is the optimization rate and \(\nabla J(x_{ed}, x_{sd}) \) is the functional gradient with relation to \(x_{ed} \) and \(x_{sd} \).

From the analysis of the variation of \(J \) given a variation of \(D_s \), it is proposed a relation between the step length, \(h_{\text{max}} \) can be computed as the height of the isosceles triangle defined by base \(D_s \) and sides \(L_{sh} + L_{th} \) plus the ankle height. This value is parametrized by parameters defined as function of \((D_s - 0.5) \) an \((T_c - 0.9) \), the differences from the initial values of \(D_s \) and \(T_c \), as shown in the following equations:

$$ h_{\text{max}} = \left(\frac{L_{sh} + L_{th}}{2} - \frac{(D_s)^2}{2} + l_{an} \right), \alpha_1, \alpha_2, $$

$$ \begin{align*}
\alpha_1 &= \frac{(D_s - 0.5)^2}{2} - 1, \quad D_s - 0.5 > 0, \\
\alpha_1 &= 1, \quad D_s - 0.5 < 0, \\
\alpha_2 &= \left(\frac{T_c - 0.9}{0.9} \right)^{3.2} - 1.
\end{align*} $$

where \(L_{sh} \) and \(L_{th} \) are the lengths of the shin and thigh, respectively.

Figure 3 shows the surfaces for \(J \) computed for different values of \(D_s \) and considering the empirical relation for \(h_{\text{max}} \). Note that the functional domain remains suitable for the optimization, even with the variation of \(D_s \).

III. ORTHOSIS-PATIENT DYNAMICS AND ROBUST CONTROL DESIGN

To implement the robust controller and the gait-pattern adaptation algorithm, the orthosis is modeled according to the basic robotic equation,

$$ M_{\text{ort}}(q) \ddot{q} + C_{\text{ort}}(q, \dot{q}) + G_{\text{ort}}(q) = \tau_0 + \tau_{\text{pat}} + \tau_d, $$

where \(q \in \mathbb{R}^n \) is the generalized coordinates vector, \(M \in \mathbb{R}^{n \times n} \) is the symmetrical, positive definite inertia matrix, \(C \in \mathbb{R}^n \) is the centrifugal and Coriolis torques vector, and \(G \in \mathbb{R}^n \) is the gravitational torques vector. The terms \(\tau \in \mathbb{R}^n \) are the torques acting in orthosis: \(\tau_0 \) is the torque supplied by the actuators, \(\tau_{\text{pat}} \) is the torque generated for the orthosis-patient interaction, and \(\tau_d \) is the torque generated by any external disturbances acting in the patient-orthosis system.

The torque of interaction between the orthosis and the patient, \(\tau_{\text{pat}} \), can be divided in active and passive components. The passive patient torque, \(\tau_{\text{pat, pas}} \), is the torque necessary to move the patient if he/she is moving in a passive way. In case that the patient influences in the orthosis movement, he/she will produce the active patient torque, \(\tau_{\text{pat, act}} \). Therefore, Eq. (11) can be rewrite, considering now, the orthosis-patient dynamics.

$$ M_{\text{ort+pat}}(q) \ddot{q} + C_{\text{ort+pat}}(q, \dot{q}) + G_{\text{ort+pat}}(q) $$

$$ = \tau_0 + \tau_{\text{pat, act}} + \tau_d, $$

where \(M_{\text{ort+pat}}(q), C_{\text{ort+pat}}(q, \dot{q}) \), and \(G_{\text{ort+pat}}(q) \) correspond to the combination of the orthosis and patient dynamics.

For to the control, the state tracking error is defined as:

$$ \tilde{x} = \begin{bmatrix} \dot{q} - \dot{q}^d \\ q - q^d \end{bmatrix} = \begin{bmatrix} \dot{\tilde{q}} \\ \tilde{q} \end{bmatrix} $$

where \(q^d \) and \(\dot{q}^d \in \mathbb{R}^n \) are the desired reference trajectory and the corresponding velocity, respectively. The variables \(\tilde{q}^d \), \(\dot{\tilde{q}} \) and \(\dot{\tilde{q}}^d \), the desired acceleration, are assumed to be within the physical and kinematics limits of the manipulator.

The dynamic equation for the tracking error is given from (12) and (13) as:

$$ \dot{\tilde{x}} = A(q, \dot{q}) \tilde{x} + Bu + Bw $$

with

$$ A(q, \dot{q}) = \begin{bmatrix} -M_{\text{ort+pat}}^{-1}(q)C_{\text{ort+pat}}(q, \dot{q}) & 0 \\ I_n & 0 \end{bmatrix}, $$

$$ B = \begin{bmatrix} I_n \\ 0 \end{bmatrix}, $$

$$ w = M_{\text{ort+pat}}^{-1}(q)\delta(q, \dot{q}, \ddot{q}), $$

$$ u = M_{\text{ort+pat}}^{-1}(q)(\tau - M_{\text{ort+pat}}(q)q^d - C_{\text{ort+pat}}(q, \dot{q})\dot{q}^d - G_{\text{ort+pat}}(q)), $$

$$ \dot{\tilde{q}} = A(q, \dot{q})\tilde{x} + Bu + Bw $$

Fig. 3. Surfaces for \(J \) considering the empiric relation for \(h_{\text{max}} \).
where $\delta(q, \dot{q}, \ddot{q})$ are the composed disturbances defined as the sum of the external disturbances, τ_e, and the parameter uncertainties on the dynamic matrices $M_{ort+pat}(q)$, $C_{ort+pat}(q, \dot{q})$ and $G_{ort+pat}(q)$. The applied torque is given by:

$$\tau = M_{ort+pat}(q)(\dot{q}^d + u) + C_{ort+pat}(q, \dot{q})\dot{q}^d + G_{ort+pat}(q).$$

Actually, the robust controller is working to attenuate only the effects of the external disturbances and the parametric uncertainties on the trajectory tracking errors. The active patient torque, $\tau_{pat, act}$, is not included into the composed disturbances, $\delta(q, \dot{q}, \ddot{q})$, since it will be attenuated by the gait-pattern adaptation algorithm.

A. State-feedback \mathcal{H}_∞ Control Design

In this section it is presented the formulation and solution for the state-feedback \mathcal{H}_∞ control problem for quasi-LPV systems, where the varying parameters are function of the system states.

The tracking error dynamics shown in Eq. 14 is actually a quasi-LPV system, since, although the matrix $M_{ort+pat}(q)$ explicitly depends on the joint positions, we can consider it as function of the position error [7]:

$$M_{ort+pat}(q) = M_{ort+pat}(\delta \dot{q}^d) = M_{ort+pat}(\delta, t).$$

The same can be observed for $C_{ort}(q, \dot{q})$.

Consider the state-feedback control problem

$$\begin{align*}
\dot{x} &= A(p(x))x + B_1(p(x))w + B_2(p(x))u, \\
\tau &= C_1(p(x))x, \\
\gamma &= C_2(p(x))x + u
\end{align*}$$

(15)

where $x \in \mathbb{R}^n$ is the state, $u \in \mathbb{R}^q$ is the control input, $w \in \mathbb{R}^p$ is the disturbance input, $\dot{z}_1 \in \mathbb{R}^n$ and $\dot{z}_2 \in \mathbb{R}^q$ are system outputs, $A(\cdot)$, $B_1(\cdot)$, $B_2(\cdot)$, $C_1(\cdot)$ and $C_2(\cdot)$ are continuous matrices of proper dimensions and $p(x) \in F^P_x$, defined by

$$F^P_x = \{p \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^m) : p(x) \in P | p_i \leq v_i, i = 1, \ldots, m\},$$

where $P \subset \mathbb{R}^m$ is a compact set, and $v = [v_1 \cdots v_m]^T$ with $v_i \geq 0$. The system (15) presents \mathcal{L}_2 gain γ in the interval $[0,T]$ if

$$\int_0^T \|z(t)\|^2 dt \leq \gamma^2 \int_0^T \|w(t)\|^2 dt,$$

(16)

for all $T \geq 0$, all $w \in \mathcal{L}_2(0,T)$ with the system starting from $x(0) = 0$ and $z(t) = [z_1(t)^T \ z_2(t)^T]^T$. The objective is to find a continuous function $F(p(x))$, such that the system in closed-loop presents \mathcal{L}_2 gain γ with state-feedback law $u = F(p(x))x$. This problem was solved in [12] and the solution is given in the following.

If there exists a continuous differentiable function $X(p(x)) > 0$ for all $p(x) \in P$ that satisfies

$$G(p) = \begin{bmatrix} G(p) & X(p)C_1^T(p) & B_1(p) \\ C_1(p)X(p) & -I & 0 \\ B_1^T(p) & 0 & -\gamma I \end{bmatrix} < 0,$$

(17)

where

$$G(p) = \sum_{i=1}^m \left(\begin{array}{c} \dot{X} \\ X(p) \end{array} \right) + \Lambda(p)X(p) + X(p)\Lambda^T(p) - B_2^2(p)B_2^T(p)$$

and $\Lambda(p) = A(p) - B_2(p)C_2(p)$, then, with state-feedback law

$$u = -(B_2^2(p)X^{-1}(p) + C_2(p)x),$$

(18)

the closed-loop system has \mathcal{L}_2 gain γ for all parameter trajectories $p(x) \in F^P_x$.

Note that (17) actually represents 2^m inequalities and $\sum \pm(\cdot)$ indicates that every combination $\pm(\cdot)$ and $-\cdot$ should be satisfied. A practical scheme ([12], [7]) can be used to solve the infinite dimensional convex optimization problem represented by (17). First, choose a set of \mathcal{C}^1 functions, $\{f_i(p(x))\}_{i=1}^M$, as base for $X(p)$, i.e.,

$$X(p(x)) = \sum_{i=1}^M f_i(p(x))X_i,$$

where $X_i \in \mathbb{R}^{n \times n}$ is the matrix coefficient for $f_i(p(x))$.

Second, the parameters set P is divided in L points, $\{p_k\}_{k=1}^L$, in each dimension. Since (17) consists in 2^m entries, a total of $(2^m + 1)L^m$ matrix inequalities in term of matrices $\{X_i\}$ should be solved.

IV. GAIT-PATTERN ADAPTATION ALGORITHM

In this section, an adaptation algorithm is used to generate the trajectory parameter T_{adapt}, according to the interaction between the orthosis and the patient.

Considering Eq. 12, the proposed algorithm, based on the inverse dynamics of the orthosis-patient system, works by minimizing the following functional,

$$J(\delta q_T, F) = \sum \left\| \tau_{pat, act}(F)_{(k)} - \delta \tau(\delta q_T)_{(k)} \right\|^2_2,$$

where F represents the interaction forces between patient and orthosis and δq_T is the reference trajectory change due to T_c variation [6]. The torque variation produced by a change in the reference trajectory, $\delta \tau(\delta q_T)$, is computed from the orthosis-patient dynamics as

$$\delta \tau(\delta q_T) = M_{ort+pat}(\delta q_T + \delta q_T) \\
+ C_{ort+pat}(\delta q_T + \delta q_T)q_T \dot{q}_T$$

(19)

$$+ C_{ort+pat}(\delta q_T + \delta q_T)q_T \ddot{q}_T - C_{pat+ort}(\delta q_T)q_T - C_{pat+ort}(\delta q_T)q_T,$$

where q_T, \dot{q}_T and \ddot{q}_T are the reference trajectory and its first and second derivatives, respectively.

V. NEURAL NETWORK SYSTEM

The proposed optimization system employs two Multilayer Perceptron NNs, Figure 4. The first NN is trained offline using the orthosis-patient dynamics and the reference trajectory change, δq_T, to give the torque variation, $\delta \tau(\delta q_T)$. The use of the NN to approximate the torque variation is justified because, in this case, the ZMP optimization is not analytically performed. This procedure is time-consuming.
The first NN is composed by 3 input neurons, related to the current value of T_c, T_{actual}, the adapted value of T_c, T_{adapt}, and the actual instant of time, t. Also, there are 12 hidden neurons and 7 output neurons, related to the torque variation, $\delta T(\delta q_i)$. The following parameters were considered during the training phase (6000 epochs): $t \in [0:0.9]$ s; $T_{adapt} \in [0.80:0.90]$ s; $T_{actual} \in [0.80:0.90]$ s; learning rate, $\alpha = 0.4$ and momentum, $\omega = 0.89$. It is necessary to include the current value of the step time, T_{actual}, in every optimization step, $\delta T(\delta q_i)$ is computed as a variation from the current trajectory.

The second NN is trained on-line, after each complete step. The objective of this NN is to find T_{adapt} that minimizes the functional J. Hence, the input to the backpropagation phase is the gradient of J with relation to T_{adapt}. This value is computed using the first NN. The input value for the second NN is T_{actual}, the actual value of the step time, t, and the output is T_{adapt}, the adapted value. This NN is composed by 12 hidden neurons and the convergence occurs after 10 epochs. Both NNs used logistic activation function for all neurons. The inputs and outputs were normalized using maximum and minimum values for each variable.

![Fig. 4. Structure of Neural Network-based system.](Image)

VI. SIMULATION RESULTS

The orthosis used for the exoskeleton for lower limbs corresponds to one Reciprocating Gait Orthosis LSU (Louisiana State University). Figure 5 shows the orthosis and the exoskeleton design. It is considered that all joint in the sagittal plane will be driven by a Series Elastic Actuator (SEA). SEA can perform force and impedance controls, which can be used to generate a variable impedance controller [10].

The dynamic parameters of the orthosis, shown in Tab. I, was obtained by the Solid Edge model. It is also presented the parameters of the patient considered in the simulation, obtained from [11], considering a 85 kg, 1.74 m individual.

An analytical model of the orthosis, considering the patient interaction and ground reaction forces, is developed using the Symbolic Toolbox of the Matlab. Figure 6 shows the motion animation of the orthosis-patient system for a simulation of two steps. In the initial step it is considered $D_s = 0.5$ and $T_c = 0.9$. For the second step $D_s = 0.5$ and $T_c = 0.82$ (T_c desired). Only the orthosis representation is shown since the patient dynamic is incorporated in the orthosis dynamics.

![Fig. 5. RGO orthosis and exoskeleton design (Solid Edge).](Image)

TABLE I

<table>
<thead>
<tr>
<th>Orthosis</th>
<th>Patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{total,ort}$</td>
<td>4.8</td>
</tr>
<tr>
<td>$I_{total,ort}$</td>
<td>1.0</td>
</tr>
<tr>
<td>$M_{total,pat}$</td>
<td>85</td>
</tr>
<tr>
<td>$I_{total,pat}$</td>
<td>1.74</td>
</tr>
<tr>
<td>Limb Mass (kg)</td>
<td></td>
</tr>
<tr>
<td>$M_{leg,ort}$</td>
<td>0.95</td>
</tr>
<tr>
<td>$M_{leg,foot,ort}$</td>
<td>0.72</td>
</tr>
<tr>
<td>$M_{leg,foot,pat}$</td>
<td>5.2</td>
</tr>
<tr>
<td>$M_{torso,ort}$</td>
<td>1.39</td>
</tr>
<tr>
<td>$M_{torso,pat}$</td>
<td>57.6</td>
</tr>
<tr>
<td>Limb Length (m)</td>
<td></td>
</tr>
<tr>
<td>$l_{leg,ort}$</td>
<td>0.39</td>
</tr>
<tr>
<td>$l_{leg,foot,ort}$</td>
<td>0.49</td>
</tr>
<tr>
<td>$l_{leg,foot,pat}$</td>
<td>0.49</td>
</tr>
<tr>
<td>$l_{torso,ort}$</td>
<td>0.12</td>
</tr>
<tr>
<td>$l_{torso,pat}$</td>
<td>0.87</td>
</tr>
</tbody>
</table>

![Fig. 6. Motion animation of the orthosis-patient system.](Image)

In this section, the neural network-based gait-pattern adaptation algorithm presented in Sections IV and V is implemented in the model of the orthosis of Fig. 5. The initial trajectory, considered here as the nominal one, is defined by $D_s = 0.5$ and $T_c = 0.9$.

Because only simulation is performed in this work, the interaction torque between orthosis and patient (active patient torque) must be artificially estimated from a definite trajectory. In this work, this value is computed through the comparison between the desired trajectory for the patient, q^d_{pat} and the actual desired trajectory, q^d. It is assumed that...
the interaction torque results of a spring type virtual coupling between the patient desired position and the real position,

\[\tau_{\text{pat},\text{act}} = K \left(q_{\text{pat}}^d - q^a \right) \] \hspace{1cm} (19)

The spring stiffness is adjusted in order to take realistic magnitudes of the active patient torque. For sake of simplicity, the desired trajectory of the patient is defined by \(D_s = 0.5 \) and \(T_c = 0.82 \). These parameters represent an increase of approximately 10% in the walking velocity. The adaptation of the parameter \(T_c \) is conducted at the end of the step, considering five equally spaced points throughout the step time.

The value of the adapted parameter is then updated as actual parameter and a new step of the orthosis-patient model simulation is performed. The final adapted parameter after three steps, that is, after three sequences of optimization of the parameters, is \(T_{\text{adapt}} = 0.8218 \). The values of \(T_c \) attained for each one for the three optimizations in this simulation were 0.8286, 0.8187 and 0.8218, respectively. Figure 7 presents the nominal, patient desired, adapted and actual trajectories of the left shin, referring three steps, initiating with the right leg in stance. Note that at the second step, after \(t = 1.05 \) s, the adapted trajectory comes close to the patient desired trajectory.

![Fig. 7. Nominal, patient desired, adapted and actual trajectories of the left shin, absolute angle.](image)

It can be observed that the algorithm obtained satisfactory results with relation to the adaptation of the parameters used in the patient desired trajectory. Note that the algorithm has good results just at the beginning of the second walking cycle (after the first step). Thus, the necessary time for the adaptation of the trajectory is small, showing the functionality of the algorithm.

It was also observed that the proposed NN-based algorithm presented a decrease of approximately 70% in the processing time, compared with the model-based algorithms. The results show that the proposed NN-based algorithm is suitable for application in an actual active orthosis.

External disturbances acting in the patient-orthosis joints can be simulated as additional torques applied to the actuators. In this paper, it is considered in the simulation external disturbances composed of normal and sine functions, see [8] for details. From Figure 7 it can be verified that the robust controller rejected the external disturbances applied at the initial part of each step.

VII. CONCLUSIONS

This paper presents a neural network-based gait-pattern adaptation algorithm which considers orthosis-patient interaction forces and the ZMP criterion, allowing to the patient to modify the gait-pattern as his/her degree of voluntary locomotion still maintaining the walking stability. Two neural network (NN) are used, the first one approximates the inverse dynamics and the ZMP optimization, while the second one works in the optimization procedure. Also, a robust controller is proposed to attenuate the deviations from the desired trajectories due to external disturbances and parametric uncertainties. The simulation results show the proposed adaptation algorithms can be applied in the actual exoskeleton being constructed to assist people with disabilities in walking.

REFERENCES